

Welcome to testbook

[image: Github-CI] [https://github.com/nteract/testbook]
[image: Github-CI] [https://github.com/nteract/testbook/actions]
[image: Coverage Status] [https://codecov.io/gh/nteract/testbook]
[image: Documentation Status] [https://testbook.readthedocs.io/en/latest/?badge=latest]
[image: PyPI] [https://pypi.org/project/testbook/]
[image: Python 3.6] [https://www.python.org/downloads/release/python-360/]
[image: Python 3.7] [https://www.python.org/downloads/release/python-370/]
[image: Python 3.8] [https://www.python.org/downloads/release/python-380/]
[image: Code style: black] [https://github.com/ambv/black]

testbook is a unit testing framework for testing code in Jupyter Notebooks.

Previous attempts at unit testing notebooks involved writing the tests in the notebook itself. However, testbook will allow for unit tests to be run against notebooks in separate test files, hence treating .ipynb files as .py files.

Here is an example of a unit test written using testbook

Consider the following code cell in a Jupyter Notebook:

def func(a, b):
 return a + b

You would write a unit test using testbook in a Python file as follows:

import testbook

@testbook.testbook('/path/to/notebook.ipynb', execute=True)
def test_func(tb):
 func = tb.ref("func")

 assert func(1, 2) == 3

Features

	Write conventional unit tests for Jupyter Notebooks

	Execute all or some specific cells before unit test

	Share kernel context across multiple tests (using pytest fixtures)

	Support for patching objects

	Inject code into Jupyter notebooks

	Works with any unit testing library - unittest, pytest or nose

Documentation

	Installation and Getting Started
	Installing testbook

	Create your first test

	General workflow when using testbook to write a unit test

	Usage
	How it works

	Set up Jupyter Notebook under test
	Decorator and context manager pattern

	Using execute to control which cells are executed before test

	Obtain references to objects present in notebook
	Testing functions in Jupyter Notebook

	Testing function/class returning a non-serializable value

	Share kernel context across multiple tests

	Support for patching objects

	Reference
	testbook.client module

	testbook.exceptions module

	Changelog
	0.2.2

	0.2.1

	0.2.0

	0.1.3

	0.1.2

	0.1.1

	0.1.0

Installation and Getting Started

testbook is a unit testing framework for testing code in Jupyter Notebooks.

Installing testbook

pip install testbook

Create your first test

Consider the following code cell in a Jupyter Notebook,

def foo(x):
 return x + 1

Here is the unit test for it which must be written in a Python module (.py file).

from testbook import testbook

@testbook('/path/to/notebook.ipynb', execute=True)
def test_foo(tb):
 foo = tb.ref("foo")

 assert foo(2) == 3

That’s it! You can now execute the test.

General workflow when using testbook to write a unit test

	Use testbook.testbook as a decorator or context manager to specify the path to the Jupyter Notebook. Passing execute=True will execute all the cells, and passing execute=['cell-tag-1', 'cell-tag-2'] will only execute specific cells identified by cell tags.

	Obtain references to objects under test using the .ref method.

	Write the test!

Usage

The motivation behind creating testbook was to be able to write conventional unit tests for Jupyter Notebooks.

How it works

Testbook achieves conventional unit tests to be written by setting up references to variables/functions/classes in the Jupyter Notebook. All interactions with these reference objects are internally “pushed down” into the kernel, which is where it gets executed.

Set up Jupyter Notebook under test

Decorator and context manager pattern

These patterns are interchangeable in most cases. If there are nested decorators on your unit test function, consider using the context manager pattern instead.

	Decorator pattern

 from testbook import testbook

 @testbook.testbook('/path/to/notebook.ipynb', execute=True)
 def test_func(tb):
 func = tb.ref("func")

 assert func(1, 2) == 3

	Context manager pattern

 from testbook import testbook

 def test_func():
 with testbook('/path/to/notebook.ipynb', execute=True) as tb:
 func = tb.ref("func")

 assert func(1, 2) == 3

Using execute to control which cells are executed before test

You may also choose to execute all or some cells:

	Pass execute=True to execute the entire notebook before the test. In this case, it might be better to set up a module scoped pytest fixture.

	Pass execute=['cell1', 'cell2'] or execute='cell1' to only execute the specified cell(s) before the test.

	Pass execute=slice('start-cell', 'end-cell') or execute=range(2, 10) to execute all cells in the specified range.

Obtain references to objects present in notebook

Testing functions in Jupyter Notebook

Consider the following code cell in a Jupyter Notebook:

def foo(name):
 return f"You passed {name}!"

my_list = ['spam', 'eggs']

Reference objects to functions can be called with,

	explicit JSON serializable values (like dict, list, int, float, str, bool, etc)

	other reference objects

@testbook.testbook('/path/to/notebook.ipynb', execute=True)
def test_foo(tb):
 foo = tb.ref("foo")

 # passing in explicitly
 assert foo(['spam', 'eggs']) == "You passed ['spam', 'eggs']!"

 # passing in reference object as arg
 my_list = tb.ref("my_list")
 assert foo(my_list) == "You passed ['spam', 'eggs']!"

Testing function/class returning a non-serializable value

Consider the following code cell in a Jupyter Notebook:

class Foo:
 def __init__(self):
 self.name = name

 def say_hello(self):
 return f"Hello {self.name}!"

When Foo is instantiated from the test, the return value will be a reference object which stores a reference to the non-serializable Foo object.

@testbook.testbook('/path/to/notebook.ipynb', execute=True)
def test_say_hello(tb):
 Foo = tb.ref("Foo")
 bar = Foo("bar")

 assert bar.say_hello() == "Hello bar!"

Share kernel context across multiple tests

If your use case requires you to execute many cells (or all cells) of a Jupyter Notebook, before a test can be executed, then it would make sense to share the kernel context with multiple tests.

It can be done by setting up a module or package scoped pytest fixture [https://docs.pytest.org/en/stable/fixture.html#scope-sharing-a-fixture-instance-across-tests-in-a-class-module-or-session].

Consider the code cells below,

def foo(a, b):
 return a + b

def bar(a):
 return [x*2 for x in a]

The unit tests can be written as follows,

import pytest
from testbook import testbook

@pytest.fixture(scope='module')
def tb():
 with testbook('/path/to/notebook.ipynb', execute=True) as tb:
 yield tb

def test_foo(tb):
 foo = tb.ref("foo")
 assert foo(1, 2) == 3

def test_bar(tb):
 bar = tb.ref("bar")

 tb.inject("""
 data = [1, 2, 3]
 """)
 data = tb.ref("data")

 assert bar(data) == [2, 4, 6]

Warning

Note that since the kernel is being shared in case of module scoped fixtures, you might run into weird state issues. Please keep in mind that changes made to an object in one test will reflect in other tests too. This will likely be fixed in future versions of testbook.

Support for patching objects

Use the patch and patch_dict contextmanager to patch out objects during unit test. Learn more about how to use patch here [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.patch].

Example usage of patch:

def foo():
 bar()

@testbook('/path/to/notebook.ipynb', execute=True)
def test_method(tb):
 with tb.patch('__main__.bar') as mock_bar:
 foo = tb.ref("foo")
 foo()

 mock_bar.assert_called_once()

Example usage of patch_dict:

my_dict = {'hello': 'world'}

@testbook('/path/to/notebook.ipynb', execute=True)
def test_my_dict(tb):
 with tb.patch('__main__.my_dict', {'hello' : 'new world'}) as mock_my_dict:
 my_dict = tb.ref("my_dict")
 assert my_dict == {'hello' : 'new world'}

Reference

This part of the documentation lists the full API reference of all public classes and functions.

testbook.client module

	
class testbook.client.TestbookNotebookClient(nb, km=None, **kw)

	Bases: nbclient.client.NotebookClient

	
cell_output_text(cell) → str

	Return cell text output

	
property cells

	

	
execute() → None

	Executes all cells

	
execute_cell(cell, **kwargs) → Union[Dict, List[Dict]]

	Executes a cell or list of cells

	
inject(code: str, args: List = None, kwargs: Dict = None, run: bool = True, before: Union[str, int, None] = None, after: Union[str, int, None] = None, pop: bool = False) → testbook.testbooknode.TestbookNode

	Injects and executes given code block

	Parameters

	
	code (str [https://docs.python.org/3/library/stdtypes.html#str]) – Code or function to be injected

	args (iterable, optional) – tuple of arguments to be passed to the function

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – dict of keyword arguments to be passed to the function

	run (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Control immediate execution after injection (default is True)

	after (before,) – Inject code before or after cell

	pop (bool [https://docs.python.org/3/library/functions.html#bool]) – Pop cell after execution (default is False)

	Returns

	Injected cell

	Return type

	TestbookNode

	
patch(target, **kwargs)

	Used as contextmanager to patch objects in the kernel

	
patch_dict(in_dict, values=(), clear=False, **kwargs)

	Used as contextmanager to patch dictionaries in the kernel

	
ref(name: str) → testbook.reference.TestbookObjectReference

	Return a reference to an object in the kernel

	
value(code: str) → Any

	Execute given code in the kernel and return JSON serializeable result.

If the result is not JSON serializeable, it raises TestbookAttributeError.
This error object will also contain an attribute called save_varname which
can be used to create a reference object with ref().

	Parameters

	code (str [https://docs.python.org/3/library/stdtypes.html#str]) – This can be any executable code that returns a value.
It can be used the return the value of an object, or the output
of a function call.

	Returns

	

	Return type

	The output of the executed code

	Raises

	TestbookSerializeError –

testbook.exceptions module

	
exception testbook.exceptions.TestbookAttributeError

	Bases: AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError]

	
exception testbook.exceptions.TestbookCellTagNotFoundError

	Bases: testbook.exceptions.TestbookError

Raised when cell tag is not declared in notebook

	
exception testbook.exceptions.TestbookError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Generic Testbook exception class

	
exception testbook.exceptions.TestbookExecuteResultNotFoundError

	Bases: testbook.exceptions.TestbookError

Raised when there is no execute_result

	
exception testbook.exceptions.TestbookRuntimeError(evalue, traceback, eclass=None)

	Bases: RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]

	
exception testbook.exceptions.TestbookSerializeError

	Bases: testbook.exceptions.TestbookError

Raised when output cannot be JSON serialized

Changelog

0.2.2

	Added support for passing notebook as file-like object or path as str

0.2.1

	Added support for allow_errors

0.2.0

	Changed to new package name testbook

	Supports for patch and patch_dict

	Slices now supported for execute patterns

	Raises TestbookRuntimeError for all exceptions that occur during cell execution

0.1.3

	Added warning about package name change

0.1.2

	Updated docs link in setup.py

0.1.1

	Unpin dependencies

0.1.0

	Initial release with basic features

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 testbook	

 	
 	
 testbook.client	

 	
 	
 testbook.exceptions	

Index

 C
 | E
 | I
 | P
 | R
 | T
 | V

C

 	
 	cell_output_text() (testbook.client.TestbookNotebookClient method)

 	
 	cells() (testbook.client.TestbookNotebookClient property)

E

 	
 	execute() (testbook.client.TestbookNotebookClient method)

 	
 	execute_cell() (testbook.client.TestbookNotebookClient method)

I

 	
 	inject() (testbook.client.TestbookNotebookClient method)

P

 	
 	patch() (testbook.client.TestbookNotebookClient method)

 	
 	patch_dict() (testbook.client.TestbookNotebookClient method)

R

 	
 	ref() (testbook.client.TestbookNotebookClient method)

T

 	
 	testbook.client (module)

 	testbook.exceptions (module)

 	TestbookAttributeError

 	TestbookCellTagNotFoundError

 	
 	TestbookError

 	TestbookExecuteResultNotFoundError

 	TestbookNotebookClient (class in testbook.client)

 	TestbookRuntimeError

 	TestbookSerializeError

V

 	
 	value() (testbook.client.TestbookNotebookClient method)

 nav.xhtml

 Table of Contents

 		
 Welcome to testbook

 		
 Installation and Getting Started

 		
 Installing testbook

 		
 Create your first test

 		
 General workflow when using testbook to write a unit test

 		
 Usage

 		
 How it works

 		
 Set up Jupyter Notebook under test

 		
 Decorator and context manager pattern

 		
 Using execute to control which cells are executed before test

 		
 Obtain references to objects present in notebook

 		
 Testing functions in Jupyter Notebook

 		
 Testing function/class returning a non-serializable value

 		
 Share kernel context across multiple tests

 		
 Support for patching objects

 		
 Reference

 		
 testbook.client module

 		
 testbook.exceptions module

 		
 Changelog

 		
 0.2.2

 		
 0.2.1

 		
 0.2.0

 		
 0.1.3

 		
 0.1.2

 		
 0.1.1

 		
 0.1.0

_static/minus.png

_static/plus.png

_static/file.png

